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The convergence of the Rayleigh-Ritz Method (RRM) or of CI calculations, re- 
spectively, for the non-relativistic electronic Hamiltonian of molecules is investi- 
gated using the conventional basis sets of Quantum Chemistry, such as systems of 
Slater, Gauss and two-electron functions. Conditions for the choice of orbital 
exponents with respect to Slater and Gauss orbitals are especially given, such that 
the convergence is guaranteed. Inter alia, in Theorem 10 a proof of the convergence 
of the RRM for a Hylleraas basis in s,t,u-coordinates is presented, a question which 
is still being debated today. 
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1. Introduction 

When solving the electronic molecular Schr6dinger equation by means of the Rayleigh- 
Ritz Method (RRM) or a Clcalculation, the suitable choice of a basis set is of the 
greatest importance. This should be done such that the Ritz eigenvalues converge to the 
exact ones with an increasing number of basis functions involved ("E-convergence"). 

To guarantee this, using the conventional basis orbitals of Quantum Chemistry, such as 
Slater and Gauss functions, the choice of the basis consists essentially in fixing a suit- 
able sequence of non-linear parameters, the orbital exponents. For Slater functions, 
these are usually chosen according to "Slater's rules" [ 1] and for Gauss functions 
according to Huzinaga's "optimized" orbital exponents [2]. Such a procedure has 
turned out to be reasonable; but since no calculation with an indefinitely increasing 
number of basis functions can be performed, the question of ultimate E-convergence 
can only be decided by a systematic mathematical investigation. From this, recipes 
for the choice of orbital exponents of one- and more-centre basis orbitals will result. 

Moreover, we investigate Slater and Gauss orbitals with single orbital exponents. 

Aside from one-electron functions "essential" two-electron basis functions have been 
used for the RRM, i.e. such functions which can not be written as a product of two 
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orbitals, but which include the interelectronic distance as a coordinate. Functions of 
this kind have been employed by Hylleraas [3], Kinoshita [4], Pekeris [5] and others 
for the computation of the helium ground state. But it is an open question still today, 
above all with respect to the Hylleraas basis in s,t,u-coordinates, whether in this case 
the RRM does converge (cf. [6-8] ). In this paper we will definitely show this to be 
the case. 

As has been shown in the first part of this paper ([9],  cited as I in the following), E- 
convergence is assured by a proof of completeness of the basis set in one of the spaces 1 
H A or HAa ; then convergence obtains for arbitrary molecules in any state; moreover, 
the convergence of the wave functions in the norms of L 2 and HA is also ensured 2. 
Thus, first of all, we have to deal with the completeness of special sets of functions. 

Some of the proofs of completeness and convergence have been omitted to save space. 
They are contained in the thesis of the first author [13], some copies of which are 
available upon request. 

2. One-Dimensional Complete Basis Sets 

Since orbitals are frequently a product of radial functions and spherical harmonics [cf. 
Eq. (9)] it is useful to first investigate one-dimensional basis sets, which are complete 
in L 2. As measure spaces of L 2 we consider the whole real axis R, the positive real axis 
W and the intervals [0,1] and [-1,1] .  

A fundamental theorem for the proof of completeness is the Theorem ofMiintz, a 
generalization of Weierstrass' Approximation Theorem (cf. [ 10], p. 65). Formulated 
for the space L2(0,1) it states (cf. [11], p. 52): 

Lemma 1 (Theorem of Miintz) 

Let {a(n)}~=l be a sequence of real numbers with a(n) > -�89 Then the system (xa(n)}n= 1 
is complete in Lz(0, 1), iff (if and only if) 

[a(n)+�89 1] =~176 t 
n = l  

From this lemma the completeness of the systems 

{exp [-~(n)x] )~=1 and (xl/2exp[-~(n) x2] }~=1 (1) 

can easily be obtained by a coordinate transformation (cf. [12], [13] pp. 63 and 64), 
as shown by 

Lemma 2 

Let (~(n)}n~_-i be a sequence of positive numbers. Then the systems (1) are complete 
in  L2(~+), iff 

1 For thedefinition ofH A and HA2 see I. 
2 For details and some restrictions see I. 
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1 + ~2(n) -  (2) 
rt=l 

holds. * 

This lemma can be illustrated by some characteristic examples: The sets (1) are com- 
plete in L2(R+), 

1) iffin the case of monotonically increasing exponents ~(n) the condition ~ ~-l(n) = ~  
holds, n=l 

2) iff in the case of monotonically decreasing exponents ~(n) the condition ~ ~(n) = 
n=l  

holds, or 

3) if {~(n)}n~=l has an accumulation point ~ with 0 < ~ < ~,. 

Thus, the sets (1) are complete in L2(N§ if, for example, 

~(n) -= n ,  n 1/2, n -1,/7 -1/2 or 1 + n -1, (3) 

they are incomplete, if, for example, 

~(n)=nZ,  n3, n -2 or n -3 (4) 

A special property of the sets ( t )  is the fact that they are either incomplete or "over- 
complete", but never "exact ly"  complete 3. As can be seen from the condition of 
completeness [Eq. (2)], an infinite number of such functions can always be deleted 
from a complete set (1) without changing the property of completeness. 

A consequence of Lemma 2 is the following sufficient criterion of completeness, 
which is an important foundation for proving the convergence of CI calculations in 
a basis built up from Slater and Gauss orbitals (Proof: [13], p. 66): 

Lemrna 3 

Let {~(n)}n=l be a sequence of positive numbers having 

1) an accumulation point ~ with 0 < ~ < ~, or 
2) a monotonically increasing subsequence ~(ni) ~ ~ with ~ ~-l(ni) = ~ .  

ni 

Then the sets 

(xkexp [-~(n) x ] }~--1 and (xk+lexp [-~(n)x 2] }~=~ (5) 

are complete in Lz(N +) for any fixed k = 0, 1, 2 . . . .  

By this lemma the question of completeness cannot be decided for arbitrary sequences 
~(n) such as {~(n) = n2}2=x. But because of Lemma 2, the sets (5) are probably incomplete 
for such a sequence of orbital exponents [cf. Eq. (4)]. 

We now consider systems of functions with a single orbital exponent: 

3 For "overcompleteness" and "exact" completeness see [14]. 



30 B. Klahn and W. A. Bingel 

Lemma 4 

Let ~, k and l be fixed constants with ~ > 0, k = 1, 2, 3 , . . .  and l = 0, 1, 2 . . . .  Then 
the system 

{x n+t exp [-~ ix [k] }n=o (6) 

is complete in L2(N). �9 

The proof of this lemma in the special case k = 2 and l = 0 can be seen from the textbook 
of Achieser and Glasmann [ 15], p. 33. All other cases are rather trivial generalizations 
of this special case (cf. [13], pp. 68 and 69). 

As a consequence of Lemma 4 we have the useful 

Corollary 

The system {x 2n+l exp(-~xk)}n=o is complete in L2(N +) for any fixed ~ > 0, l = 0, 1, 2 . . . .  
and/c= 1 ,2 ,3  . . . .  

This assertion can be understood from the following fact: A system (~n, ~n }~= o of even 
functions ~0 n and odd functions ~n is complete in the Hilbert space LZ(-a, a) with a ~ R +, 
i f fboth {~0n}n= o and {~n}n=o are complete in L2(0, a) (Proof: [13], p. 71). Now the 
corollary follows from Lemma 4, if one identifies {~n}n= o with the set of the corollary 
and (~n}n--o with the set (x2n+l+lexp(--~Xk)}n= 0 for even l and vice versa for odd I. �9 

If one is interested in linear combinations of complete sets, the following lemma is 
useful, it is valid for arbitrary Hilbert spaces H (Proof: [13], p. 73): 

Lemrna 5 

Let {~}n--1 be a complete system in a Hilbert space H. Moreover, let an, (1 ~</J ~< n) 
be arbitrary complex numbers with ann =/= 0. Then the system 

{~n = ~ anur (7) 
#=1 

is also complete in H. �9 

The orthogonalization of complete basis sets is one of the numerous problems to 
which Lemma 5 can be applied: if, for instance, {~n}n=1 is complete in H, then the 
appropriate orthonormalized system, obtained from the Schmidt procedure, is also 
complete in H. 

A special application is to the set of Legendre polynomials 

(P.(cos o)}2=o (8) 

in the Hilbert space L2ino (0, rr), i.e. the space of all quadratically integrable functions 
in the interval [0, 7r] with the weight function sin O. Since both systems (x2n}n=o and 
{ x2n + l)n- o are complete in L 2 (0, 1) because of i.emma 1, {x n }n= o is complete in L 2 (_ 1,1). 
Thus {Pn(x)}n=o is complete in L2(-1 ,  1) by Lemma 5; finally, by a coordinate trans- 
formation (x = cos O) the completeness of (8) in Ls2in o(0, 70 follows. 
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3. More-Dimensional Complete Basis Sets 

Basis orbitals for the space L2(R a) are frequently of the form 

~nlrn (r) = Rm(r)Ylm (0, ~o), (9) 

where (r, tg, ~o) are spherical coordinates, Ylm the spherical harmonics (of. e.g. [16], p. 
84) and Rm any set of radial functions, which remains to be defined. 

We now ask: Under which conditions on the radial functions is the system (era.m) com- 
plete in L2(~a)? And, above all: Under which conditions does a CI calculation, as 
described in I, Sect. 8, converge in this basis? 

With respect to the question of completeness the following lemma is valid: 

Lemma 6 

Let (Rn1(r)}n~Z(O be a system of radial functions, where I(l) denotes a set of indices 
for each fixed l = 0, 1, 2 . . . .  Then the orbital basis 

(~mm(r)=Rm(r)Ylm(O,~o)}n~(O f o r a l l l > 0 ,  Iml<l  (10) 

is complete in Lz(R3), iff (rRnl(r))n~(O is complete in L2(~ +) for each 1. 

Proof 

Let (rRnz(r))n~i(O be complete in L2(R +) for each l. Then by Lemma 2 of Part I 
Lr 2, i.e. the space of all quadratically integrable functions (Rnt(r)}n~i(O is complete in 2 

in ~+ with the weight function r 2. Thus the completeness of (10) follows from the 
completeness of the spherical harmonics by a theorem of Rellich ([ 17], p. 8). 

If, on the other hand, {rRnl(r)}n~I(1) is incomplete for a single l = k, there exists a 
g~L2(R *) orthogonal to this set in the scalar product of L2(~+). Therefore, 

fir) = r-lg(r) rko (0, 9) (11) 

is orthogonal to (10) in the scalar product of L2(R3), i.e. (10) is incomplete in L2(E3). 

This 1emma can easily be generalized to the case of two-particle functions: 

Lemma 7 

The set 

(SnluX(rl, r2) Ylm(O1, ~01) Yh#(t92, ~02)} 

is complete in L2(~6), if~ the sets 

{rlr2Snlvx (rl, r2)}n~l(l), v~I' (l) 

are complete in L2(N+ x N+) for each I and X. 

n ~I(l), v~f(;~); 

for al l l ,~.> O, Iml ~ l ,  I/at ~;~ (12) 

(13) 
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After these completeness investigations we now turn to the problem of convergence 
of CI calculations for the basis (10); here we will make use of the important 

Lemma 8 

Let the sets of radial functions (Rnt(r)}n~t(O be defined for each l = 0, 1,2 . . . .  such 
that 

( r  1 d 2 1 d I ( l+1)]~ , , ]  

i 
F )R nl( r ) = r  C - - - + - -  ( 1 4 )  

2 + 2  r dr 2r 2 

is complete in L2(R +) for any c > 0 and each 1 = 0, 1, 2 , . . .  Then the set (10) is 
complete in HA = (~3) and a CI calculation converges in this basis by Kato's criterion 
of convergence (cf. I, Theorem 8). 

hoof 

By Theorem 8 of Part I the completeness of the system {(c + t)RnlYlm } in L2(~ 3) 
has to be shown for e > 0, where ~ is the one-particle kinetic energy operator. Since 
the spherical harmonics are eigenfunctions of the angular momentum operator, we 
obtain, after a short calculation, 

(c + ~) RnI Ylm = r-l A t(c, r) Rnt(r) Ylm ( O, ~). (15) 

Thus, the assertion follows from the assumed completeness of (14) by Lemma 6. * 

Analogously to Lemma 6, a theorem of completeness can be proved which is of great 
importance with respect to the two-particle basis sets used by Hylleraas. Its proof (cf. 
[13], p. 74) mainly makes use of the completeness of the Legendre polynomials 
[Eq. (8)]. 

Lemma 9 

Let L2yn be the Hilbert space 

( I;; i f(rl,rz,O) drxr~ dr2r~ dOsin OIf(rl,r> O)[2 < . (16) 
0 0 0 

With Pt(x), the Legendre polynomials and I(1) sets of indices, 

(Snt(rl, r2) Pt(cos O)}n~_i(l) for all l ~> 0 (17) 

is complete in L~tyll , iff {rlrz Snl(r> r2)}n~i(t ) is complete in L2(R + x R +) for each 
/ = 0 , 1 , 2 , . . .  * 

4 .  O n e - C e n t r e  S l a t e r - T y p e  B a s i s  O r b i t a l s  

The radial functions of one-centre Slate>type orbitals are of the form 

Rnt(r) = r~(n) +texp [-~(n, l)r] (18) 
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with suitably chosen orbital exponents ~(n, /) and "generalized" total quantum 
numbers c~(n), mostly fixed to be a(n) = n (n ~> 0). 

Investigating the convergence of CI calculations it is reasonable to treat two cases 
separately: 

1) We choose a sequence of  orbital exponents and a(n) = 0, or 

2) we choose c~(n) = n and a single orbital exponent for each l ~(n, l) = ~(l). 

The convergence can be shown for both cases separately. Of course, in order to yield 
a greater speed of convergence one can combine both cases. 

The completeness of  the basis set 

{rZexp [-~(n, l)r] Ylm(O, ~)} for all n /> i , /~> 0, imi ~<l (19) 

in L2(N 3) is immediately seen from Lemmas 3 and 6, if the orbital exponents fulfil 
the following conditions: Let the positive sequences {~(n,/))2=1 for each l = 0, 1, 2 , . . .  
have 

1) an accumulation point ~(/) with 0 < ~(/) < ~ ,  or 

2) a monotonically indefinitely increasing subsequence 

(~(ni, l)}ni w i t h  ~ ~-l(ni, l) = 
ni 

The convergence will be proved under more restrictive conditions for the orbital 
exponents. Essentially, the proof  rests on the identity theorem of  analytic functions 
(cf. [24],  p. 87); therefore, only such sequences (~(n,/)}2=1 can be considered, which 
have at least one finite accumulation point for each 1 4 

Theorem 1 

Let the sequences of  positive numbers (~(n, l)},~=1 have an accumulation point ~(l) 
with 0 < ~(l) < ~ for each l = 0, 1,2 . . . .  Then the orbital basis (19) is complete in 
HA ~ (R 3) and CI calculations in this basis are convergent. 

Proof 

By Lemma 8 we have to show the completeness of  

{Ai(c, r ) / e x p  [-~(n, l)r] = [(c - �89 l))r + (l + 1)~(n , / ) ] /exp  [-$(n,  l)r] }n~-_l 

(20) 

in L2(~ +) for each l. Therefore, we choose functions f t  ~L2(~+) ,  which are orthogonal 
to the set (20) relative to the scalar product o f k 2 ( R  +) and show that s f t  = (9: 

4 Otherwise, Weierstrass' factor theorem had to be applied; but  in this case the proof  o f  convergence 
fails, 

5 
| denotes  the  zero element  o f  the  space L 2. 
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For this purpose we define the functions 6 

gl(z) = (h ,  [(c - ~z2)r + (l + 1 ) z ] / e x p  [-zr] ) ~+ (21)  

which are analytic in the positive complex half-plane Re(z) > 0. Because of the definition 
o f f l  we have for each l 

gl(~fn, l)) = O, (n >~ 1). (22) 

As the sequences (~(n, l)} have an accumulation point in the region of analyticity 
Re(z) > 0, the hi(Z) vanish identically in Re(z) > 0 by the identity theorem of analytic 
functions. Thus, their first and second derivatives also vanish identically and we obtain, 
after a short calculation, 

- ( f l ,  rl+l exp(-zr)~+ = gi'(z) + 2zgi(z) + (1 + z 2)gl(z) = O, (Re(z) > 0) (23) 

Putting z = ~(n, l) into (23), j~ = O follows from Lemma 3. �9 

The assumptions of  this theorem are fulfilled, for instance, if all the ~(n, I) are 
numbers in a fixed "interval o f  convergence" 

0 < ~min <~ ~(n, l) ~< ~max < 0% (24) 

since the sequences {~(n, l)}n=l then have an accumulation point in the interval 
[~mm, ~max] by the theorem of  Bolzano-Weierstrass. 

The conditions of  Theorem 1 for the orbital exponents are, however, only sufficient. 
Thus, a CI calculation might be convergent in the basis (19) even for sequences like 
~(n, 1) = n or n-1. 

A less usual orbital type is the "anisotropic" Slater function of Eq. (25). The conditions 
of  convergence for such a basis are quite similar to those for the basis (19): 

Theorem 2 (Proof: see [13],  p. 90) 

Let the orbital exponents {~i(n)}n=l, with i = x, y ,  z, each have a finite accumulation 
point. Then the system 

((I ,  x, y, z, xy, xz, yz, xy z ) "  exp [ -~x(n)  Ix[ - ~y(m) [y[ - ~z(/) Izl] }~,rn,>a (25) 

is complete in HA (I~ 3) and CI calculations converge by Michlin's criterion of  con- 
vergence (cf. I, Theorem 7). �9 

We now consider Slater functions with a single orbital exponent ~ > 0: 

{r n+z exp(-~r)Ylm }n=n' for all l >~ 0, [ml <~ l. (26) 

Because of  Lemmas 4 and 6, the basis (26) is complete in Le(R 3) for any fixed n' = 0, 
1, 2 , . . .  The convergence is guaranteed by the 

6 The index 8" of the scalar product says that it is a scalar product of the space L2(N+). 
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Theorem 3 

The Slater basis (26) is complete inHA2 (R 3) for n' = 0 and CI calculations are con- 
vergent in this basis. 

35 

proo/: 

By Lemma 8 the completeness of {Al(c, r)Rndr)}n=o, i.e. of 

rn+l+lexp(-~r) c -  ~ + - - - r  - -  2re .lln=o (27) 

in Le(N +) has to be shown for each l = 0, 1 , 2 , . . .  Choosing especially c = ~2/2, this 
follows at once from Lemmas 4 and 5. t 

As a consequence of this theorem we can now prove the convergence of CI calculations 
in the basis 

{x nym ztexp(-~r)}~, m ,  l = O,  {rxnym ztexp(-~r)}~, m ,  l = O" (28) 

The first part of the system (28) is already complete in L2(R 3) (cf. [13], p. 94), for 
convergence both parts have to be taken into account: 

Theorem 4 

The system (28) with 8 > 0 is complete in HA2 (R 3) and CI calculations in this basis 
are convergent. 

ProoI 

Because of Part I, Theorem 8, we choose an fEL2(N3),  such that 

(f, (c + ?)xnym ztexp(-~r)) = 0 
(f, (c + @xn ym zlexp(-Sr)) = 0 (29) 

is valid for all n, m, l i> 0 and show that s f =  0. Now, any function of the form 
rV+Xexp(-Sr)Yxu can be written as a finite linear combination of functions of the 
system (28). Thus, from (29) it follows that 

(f,(c+~)rn+lexp(-~r)Ylm)=O for alln ~> 0, l~>0, !m[~< l (30) 

and therefore f = | by Theorem 3. 

5. One-Centre  Gaussian Basis Orbitals  

The many uses of Gauss-type basis orbitals are mainly due to the fact that all molecular 
integrals, including the 3- and 4-centre forms, can be evaluated analytically. On the 
other hand, Gaussians have the wrong behaviour for small and large r: For r ~ 0 they 
have no cusp like an exact wave function (cf. [18]) and for r -* oo they decrease too 
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quickly. These "unphysical" properties cause a slower convergence of CI calculations 
as compared with the convergence behaviour using a Slater-type basis. 

Firstly, we investigate Gaussians with variable orbital exponents: 

{rtexp[-~(n, l)r2]Ytm(O,~)} for allnf> 1,l~> 0, Iml ~<l. (31) 

The completeness of this system in L2(R 3) is ensured by Lemmas 3 and 6 if the 
orbital exponents fulfil the following conditions for each fixed l: Let {~(n, l)}n=l have 

1) an accumulation point ~(l) with 0 < ~(/) < ~,  or 

2) an indefinitely increasing subsequence ~(ni, l) with 2ni ~-1 (hi, I) = ~,  or 

3) a subsequence ~(ni, D decreasing monotonically to zero with ~.ni~(ni, D = 0% 

Tile case 3), which is not a direct consequence of Lemma 3, can be reduced to case 2) 
by a Fourier transformation (cf. [13], p. 97). 

Now the important theorem concerning the convergence with Gaussians is: 

Theorem 5 (Proof: see [13], p. 98) 

Let the sequences {~(n, l)}~=1 of positive orbital exponents for each I have 

1) an accumulation point ~(1) with 0 < ~(/) < ~,  or 
2) a subsequence ~(n i, l) decreasing monotonically to zero with "2ni ~(ni, l) = ~.  

Then the set of Gaussian orbitals (31) is complete in HA ~ (R 3) and CI calculations in 
this basis are convergent. �9 

Theorem 5 guarantees the convergence of a CI calculation for arbitrary molecules and 
states in the Gaussian basis (31), provided that the orbital exponents fulfil the con- 
ditions of Theorem 5. This is the case, if, for instance, 

1) all orbital exponents belong to a fixed interval of convergence [cf. Eq. (24)], or 
2) ~(n, l) = n-1 or n-l/2. 

Of course, it is always possible to add to such a sequence of orbital exponents additional 
values. These do not destroy the convergence but may be used to increase its speed. 

As an example of such a case we consider the "optimized" orbital exponents given by 
Huzinaga [2] for different atoms. As far as can be seen from such finite sets, they can 
be divided into two sub-sequences, one of which has an accumulation point at zero or 
near zero, which is responsible for the convergence, while the other increases indefinitely 
and describes the cusp. 

We now turn to Gaussians with single orbital exponents: 

{r2n § exp [-�89 ~(l)r 2 ] Y1m (0, ~v)} for all n ~> n', I ~> 0, l ml<~ l. (32) 

The completeness of (32) in L2(• 3) for fixed n' = 0, 1,2 . . . .  and positive ~(l) follows 
from Lemma 6 and the corollary of Lemma 4. The convergence is guaranteed by the 
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Theorem 6 (Proof: see [13], p. 101) 

The basis of Gaussian orbitals (32) with n' = 0 and ~(l) > 0 is complete in HA ~ (N 3) 
and CI calculations in this basis are convergent. 

Through Theorems 5 and 6 the convergence of CI calculations is ensured even if one 
takes a combination of the two sets (31) and (32) as a basis. 

Finally, we consider a system quite analogous to Eq. (28): 

n m l  1 2 (x y z exp(-g~r )}n,m,l=O. (33) 

Theorem 7 

The orbital basis (33) is complete in HA~ (N 3) and Cl calculations in this basis are 
convergent. 

Proof 

The completeness of {Hn(X) exp(-~xZ/2)}n=o in HA~ (~)  has been proved by Kato 
[19], Hn(x) being the Hermite polynomials (cf. [10], p. 91). Thus, the completeness 
of {x n exp(_~x2/2)}~=o in HA~ (R) follows from Lemma 5, and the assertion of the 
theorem follows from a lemma mentioned 7 in I. 

It should be emphasized that all convergence conditions, especially those concerning the 
choice of orbital exponents, should only be considered as mathematical guidelines. They 
should be fulfilled, but even then there is still considerable freedom in their choice 
leaving room for physical arguments like Slater's rules or optimization procedures. 

6. Many-Centre Bails Orbitals 

The criteria of convergence of Michlin and Kato (cf. Part I, Theorems 7 and 8) are 
valid for both atoms and molecules; the number of centres does not play a role in 
their formulation. Therefore CI calculations converge already in a one-centre orbital 
basis for arbitrary molecules if one of the criteria proved above is fulfilled. Once the 
convergence is assured, adding further orbitals at other centres changes nothing. 
However, in this way, the speed of convergence can be considerably enhanced. 

Moreover, there are no special, conditions of convergence which are characteristic of 
many-centre orbitals. Let us, for instance, consider a two-centre orbital basis of 
Slater functions or Gaussians according to Eqs. (19) and (31), {~A (n,/)}~:1 and 
{~B(n, l)}n~176 being their orbital exponents at the two centres A and B each having an 
accumulation point. Thus the CI calculation is convergent using the subsets at centre 
A or B alone. Deleting orbital exponents from the sequences {~A (n, l)}~~ 1 and 
(~B( n,/)}~:1, E-convergence is preserved for both subsets as long as both still have 
an accumulation point: The convergence is also preserved if only one sub-sequence, 

7 
It is a lemma analogous to Lemma 6 of Part I, where H A has to be replaced by HAS. 
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{~A (n, l)}n=l or {~t~(n,/)}n=x, has an accumulation point, but E-convergence is 
destroyed if none of the sub-sequences has an accumulation point. The case that the 
CI calculation is E-convergent neither in the basis functions of centre A nor of B but 
is E-convergent in the total basis, does not occur. 

7. Two-Electron Basis Functions 

Using "essential" two-electron functions, high accuracy can be achieved by the RRM 
already with only a few basis functions. These functions include the interelectronic 
distance r12 as a coordinate; therefore correlation effects are taken into account even 
by a single function. 

Examples of such functions are those which have been used by Hylleraas [3], 
Kinoshita [4] and Pekeris [5] for the computation of the helium ground state. 

However, the question of convergence for these calculations has remained unsolved, 
if not debatable, even today. Expanding the exact ground-state eigenfunction u 
in a basis of Hylleraas functions ~k [cf. Eq. (48)], 

u = ~ ck~ k, (34) 
k 

and putting (34) into the Schr6dinger equation, one obtains a recursion formula for 
the c k [6] which does not allow them to be determined without contradiction. It 
was therefore believed that the RRM in the Hylleraas basis {| could not be 
E-convergent. Attempts [7, 8] to prove this convergence have not been successful 
until now. In the following, this long-standing question will be positively resolved. 

7.1 Hydrogen-Like Orbitals 

To prove the convergence for two-electron basis sets, as a first step we consider once 
more an orbital basis: the hydrogen-like functions (35). 

As is well known, the discrete eigenfunctions of the hydrogen atom do not form a 
complete set in Lz(R 3) because of the continuous spectrum. They are therefore 
unsuitable as a basis for the RRM. That is why Hylleraas proposed to use modified 
hydrogen-like basis functions: 

(~Pntrn (r ) = R nl(r ) Ylm ( O, ~P ) 
_ .  / r  (2/+ 1) - r L n +  t (~r) e x p ( - ~ r ) Y t m ( O , ~ ) }  f o ra l ln>l>~O,  Lrn[<~l. (35) 

The exact hydrogen eigenfuncti0ns differ from the 99nlrn by an orbital exponent ~(n) = 
2In varying with n. Moreover, the ~Onlrn are orthogonal with the weight factor r -1. 

We next prove 

Theorem 8 

The set of hydrogen-like functions (35) with ~ > 0 is complete in HA~ (R 3) and CI 
calculations converge in this basis. 
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Proof 

The radial functions Rnt(r), as defined in Eq. (35), fulfil the differential equation 
(cf. [31, p. 17) 

[~rr 2d  2 2 d  / ( I + l )  2 n] 1 +~r  Rnt(r ) O. (36) 
r dr r 2 4 

Because of Lemma 8 we have to show the completeness of {At(e, r)Rnt(r)}n=l+l in 
Lz(N +) for each l = 0, 1, 2 . . . .  , i.e. using Eq. (36) the completeness of 

Choosing especially c = }2/8, this can be seen immediately by Lemmas 4 and 5. I~ 

From this theorem a useful consequence can be drawn: 

Lemma 10 

Let the radial functions Rnt(r) be defined as in Eq. (35) and ~ > 0. Then the system 

((nr2 + url)Rnt(rl)Rvl(r2)} for all n and v > l 

is complete in L2(R + x R +) for each fixed l = 0, 1, 2 , . . .  * 

The proof of Lemma 10 makes use of Theorem 8 and Lemma 7 of this paper and 
Lemma 3 of Part I (cf. [13], p. 108). 

(38) 

7.2 Hylleraas-Basis in rl, r2, O-Coordinates 

The Helium atom can be described by the following choice of  coordinates: 

1) the distances rl, r2 of both electrons from the nucleus and the angle 0 subtended 
by the vectors,rl and r2 ; 

2) the three Eulerian angles describing the position of the triangle subtended by 
(rl, r2, O). 

I f  one is interested only in S-states, which are independent of the orientation of this 
triangle, the six-dimensional problem can be reduced to a three-dimensional one: all 
basis functions in question need only depend on the coordinates r I , r 2 and O. The 
norm of such a special function f E L Z ( N  6) can be written as (cf. [3], p. 19; [21], 
p. 1737): 

[[f[I 2 = 871-2 drl r2 dr2 r2 dO sin O If(r1, r2, 0)12 = ]lflj2yll . (39) 
o o o 

Through this norm a new Hilbert space is induced, namely the space LZyn, defined 
by Eq. (16), which consists of all S-functions of L2(~6). 

In these coordinates the kinetic energy operator takes the form 

~1%f= 1 ' - g  (AI+ A2)f f o r f E L 2 y n  (40) 
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where A} (i = 1,2) is the modified Laplacian 

, 1 ~ 2 3  1 ~ 
Ai = r~ Ori ri ---~ O~t9 sin --- (41) ~r i r~ sin 30" 

Now, Hylleraas used the following set of two-electron S-functions: 

{Rnl(rORvt(rz) Pt (cos O)} for all n, v > l >/0 (42) 

where the Rnt(r) are defined as in Eq. (35) and the P1 are the Legendre polynomials. 
The convergence of the RRM is ensured by 

Theorem 9 

The Hylleraas basis (42) is complete in the subspace of all S-functions of HA ~ (~6) and the 
RRM converges in this basis for any S-state. 

Proof 

It has to be shown that 

{(c + ~ Rnl(rt)Rvt(r2)Pt(cos 0)} for all n, v > l >~ 0 (43) 

2 is complete in Lttyll. For convenience we choose c = ~z/4; using the differential equation 
of the Legendre polynomials 

1 ; s i n  O ; P l ( c o s O ) = - l ( l +  l)Pl(cosO) (44) 
sin 0 

and the Eqs. (36), (40) and (41) we obtain after a short calculation 

(�88 ~2 + ?)Rnt(rl)Rvl(r2)Pl(cos O) = �89 ~ + Rnl(rl)Rvl(r2)Pl (cos 0). (45) 

Thus by Lemma 9 the completeness of 

} \rl 

in L2(N + x N +) remains to be shown for each l = 0, l, 2 . . . .  This, however, has 
already been done through Lemma 10 of this paper. r 

With this theorem any doubts about the convergence of the RRM for S-states in the 
basis (42) (cf. [3], p. 18) have turned out to be groundless. 

7.3. Hylleraas-Basis in s, t, u-Coordinates 

Hylleraas [22] obtained much better results for the helium ground state with the 
coordinates: 
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s = r l + r 2  0 ~ s ~  c~ 

t =  - - r l + r  2 O ~ t ~ u  

. = rl~ = (rl  ~ + d - 2r l r2  cos  O) 1~2 0 < u .< s. 

We now show the RRM to be convergent in the Hylleraas basis 

{exp(- - �89  l} for all n, m, I~>0. 

This is already true if only functions with even l are used. 

(47) 

(48) 

Theorem 10 

Let ~ be positive. Then {exp(-�89 0 is complete in the subspace of  all 
S-functions of  HA: (N 6) and the RRM is convergent in this basis for any S-state. 

Proof 

Let f b e  an e l e m e n t  of  L2yll with the property that 8 

( f  , (c + ~ exp( - �89  ~s)sn tm u21)Hy n = 0 (49) 

for all n, m, l >~ O. By Theorem 3 of Part I f =  | has to be shown. For this purpose 
we go over from s, t, u to rt, r2, O-coordinates 9 

(f, (c + ]h) exp [-�89 1 + r2) ] (r 1 + r2) n ( - r  1 + r2) m (r 2 + r~ - 2r 1 r2 cos O)/)rtyll = O. 
(5o) 

As can be easily seen (cf. [13],  p. 182), the functions ~ rq ' can  be written for each 
p, q = 0, 1,2 . . . .  as a finite linear combination of  (r 1 + r2)n( -r l  + r2) m, where p + q = 
m + n. Thus, from (50) we get 

(f, (e + T) exp [-�89 + r2)] ~ r q ( r  2 + r 2 - 2ra r 2 cos  l~)/)Hyll = 0. (51) 

I f  we write down this equation for l = 0, 1 ,2  . . . .  and solve it successively, we obtain 
for each p, q, k = 0, 1 ,2 . . . .  

q+k COSkO)Hyll = 0. (52) (f, (c + ~ exp [-�89 + r2)] 4 +k r2 

Since the Rnl(r) of Eq. (35) are finite linear combinations of  the set 

{r p +t exp( _12 n - 1 ~r))p:o (53) 
if follows from Eq. (52) that 

( f ,  (c + T)Rnl(rl)Rul(r2)Pl (cos O))uy u = 0 (54) 

for all n, u > l >~ O. Consequently, we have f =  O by theorem 9. �9 

Although the basis functions (48) with odd l are not necessary for convergence, they 
are still important. They are responsible for an adequate approximation of  the correla- 

2 8 The index "Hyll" of Eq. (49) indicates that it is a scalar product of the space LHylI. 
9 Strictly, in Eq. (50)f ins tead  of f had to.be written, where)7(rl, r2, O)= f(s,  t, u). 
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tion cusp 1~ and therefore contribute to a high speed of convergence. Schwartz [23] 
achieved even higher speed using half-integral powers of u in his calculations. 

It should be clear that for the computation of IS-states only functions with even m 
and for 3S-states only those with odd m have to be used. 

7. 4 Kinoshita Basis 

An extension of the Hylleraas basis (48) is Kinoshita's basis 

{exp(-l ~s)snl-s) \u] J~,m,,=o. 

The Hylleraas basis (48) is a subset of(55) restricted to n ~> m >/l ~> 0. Therefore the 
RRM is convergent in the basis (55) as well as by Theorem 10. 

As Kinoshita has shown, the exact wave function u can be expanded in his basis (55) 
according to Eq. (34), i.e. the expansion coefficients can indeed be determined without 

any contradiction, different from the case of the Hylleraas basis (48). Thus we con- 
clude that there is no direct correspondence between the questions of expansion of 
wave functions and E-convergence. 

7.5 Pekeris Basis 

The basis functions of Pekeris [5] are written in "perimetric" coordinates: 

x = - t )  = 1 ( r 1 2  + r l  - r 2 )  

y = �89 + t) = �89 - rl + r2) 0 <~ x, y, z ~< 

Z = S - - h i  - - r l + r 2 - r 1 2  

The basis set is of the form 

{Ln(x)Lm(y)Ll(z ) exp [_1 ~(x + y + z)] }~,m,l=0, 

L n being the Laguerre polynomials of degree n. The convergence is guaranteed by 

(56) 

(57) 

Theorem 11 (cf. [13] ,p.  116) 

Let ~ be positive. Then the Pekeris basis (57) is complete in the subspace of all S- 
functions of HA 2 (N 6) and the RRM is convergent in this basis for any S-state. r 

The proof of this theorem can be reduced to Theorem 10 by taking the fact into 
account that the Pekeris functions of Eq. (57) can be written as finite linear combinations 
of the Hylleraas functions of  Eq. (48). 

lo For the correlation cusp of molecular wave functions see [18]. 
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